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ABSTRACT

Thermomechanical processing was conducted on cast 6061 AI-AI20 3 metal

matrix composites (MMCs) containing either 10 or 20 volume percent of alumina

(A120 3) particles. These materials were provided by DURALCAN-USA, Inc., of San

Diego, CA in conjunction with a Cooperative Research and Development Agreement

(CRDA) program on ductility enhancement for these MMCs. Processing included

isothermal forging and rolling of materials at 500°C, with interpass anneal (IPA) times of

5 or 30 minutes. Isothermal rolling was also accomplished on 1.0 inch thick 6061 -T6 Al

plate. Processed materials were solution heat treated at temperatures ranging from 480-

560°C, and then were age hardened at 160°C. Tensile testing was conducted to evaluate

strength and ductility. Homogeneity of the particle distribution was improved by

processing for both composites and no microstructural damage was apparent. Lower

solution heat treatment temperature provided significant ductility enhancement while the

longer IPA time at 500°C had a minor beneficial effect. As the percentage of

reinforcement increased, aging time to peak strength decreased; peak strength, and yield

strength increased; and ductility decreased. As the solution heat treatment temperature

was decreased ductility was enhanced at a cost of peak strength.
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I. INTRODUCTION

The engineered materials area is now expanding rapidly with new developements.

Engineered materials are those that have had their properties (e.g., stiffness, strength,

ductility or wear resistance) tailored to a desired condition during manufacturing.

Aluminum alloys reinforced with either alumina (A120 3) or silicon carbide (SiC) particles

are engineered materials. In the past these materials have been produced by powder

metallurgy methods. More recently, DURALCAN of San Diego, CA has pioneered

ingot metallurgy methods to produce Aluminum-based, particle-reinforced metal matrix

composites (MMCs). The process involves melting the matrix alloy and stirring in the

particulate reinforcement to create the composite which is then cast either into a useable

form or to provide ingot material for subsequent deformation processing. An advantage

of this production route is the potentially large size of ingots which can be made. Thus,

there is the potential for low cost, high volume production of these materials.

Until now MMCs, whether manufactured by powder or ingot processes, have lacked

sufficient ductility for many engineering applications. Although they have many

desirable properties (high stiffhess, high wear resistance, and high strength) their lack of

ductility has prevented their application in many end uses. One category of applications

is those which are deflection limited and thus require a high ratio of modulus of elasticity,

E, to density, p. An example is an extruded tubular automotive drive shaft. Increasing the

E/p ratio increases the rotational speed prior to the onset of transverse vibration due to

gravitational effects. A possible military application would be materials for lightweight

armor vehicles. An improved E/p ratio would reduce vehicle weight if suitable ballistic

impact characteristics can be achieved.

Research on the thermomechanical processing (TMP) of cast MMC materials

followed efforts at the Naval Postgraduate School on grain refinement and superplasticity

in Al alloys [Refs. 2-9]. Initial studies involved application of additional TMP to
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extruded MMC materials. This work demonstrated that composite ductility could be

enhanced with little or no strength decrease by such processing [Refs. 10-17].

Subsequent interest by DURALCAN has resulted in the present research effort. This

investigation seeks to expand on the previous work as part of a Cooperative Research and

Development Agreement (CRDA) [Ref. 1] to enhance the ductility of current 6061 Al -

A120 3 metal matrix composites for the purpose of manufacturing extruded and rolled

products. The MMC's of interest here contain either 10 vol. pct of 12.5pm A120 3 or 20

vol. pct. of 19.Opm A120 3 particles (mean diameters).
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II. BACKGROUND

The factors which influence the ductility of particle-reinforced MMCs are not fully

understood. The relationship between strength and ductility for the unreinforced matrix

is complicated by the interaction of the added reinforcement particles with the matrix.

This interaction is affected by factors such as the particle size and shape, the particle

distribution, interfacial phenomena, mismatch of particle and matrix thermal expansion

coefficients, and damage to particles during processing. Thus, a complete theory of

deformation and fracture for particle-reinforced MMC materials remains to be developed

and will require both experimental and theoretical approaches. Indeed, most of these

factors are influenced by processing history and therefore the evolution of MMC

microstructure and properties during processing requires detailed study.

A. STUDIES ON PROCESSING OF 6061 AL - AL 20 3 MMCS

Initial work on 6061 Al - A120 3 materials in this laboratory [Ref. 10-17] adapted

TMP methods developed in work on processing of superplastic Al-Mg alloys [Ref. 2-91

for the rolling of these MMCs. The rolling was accomplished on material supplied in an

initially extruded condition and thus constituted additional TMP. This work

demonstrated that the additional processing reduced the extent of banding in the particle

distribution and enhanced the ductility of the processed material. Subsequent studies

examined the effects of processing on the matrix microstructure. It was shown that

matrix grain refinement could be accomplished by particle-stimulated nucleation (PSN)

of recrystallization for suitably chosen processing conditions [Ref. 101.
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Eastwood [Ref 17] examined subsequent heat treatment of the processed MMC

materials. . The use of reduced solution heat treatment (SHT) temperatures was

investigated as a means of retaining grain refinement achieved in prior processing. It was

shown that exceptional ductility could be obtained in heat treated material but at the cost

of some strength. Data for unreinforced 6061 are compared in Table I to data for the

processed and heat treated composite [Ref. 17]. The data for unreinforced 6061

corresponds to SHT at 560°C followed by aging for 18 hrs. at 160°C to achieve a T6

temper. The composite was given a stabilizing heat treatment consisting of a soak at

500°C rather than a full SHT at a higher temperature. This was followed by various aging

treatments at 160°C as indicated in Table 1.

TABLE 1. STRENGTH AND DUCTILITY COMPARISONS FOR AGED UNREINFORCED
6061 TO STABILIZED THEN AGED 10 V/0 COMPOSITE.

Material Time Yield UTS Percent
(hr) Strength (MPa) Elongation

Unreinforcedc
6061 Aged T6 18 276 310 17.2

Stabilized and
Aged 8.3 205 263 17

Composite
Stabilized and

Aged 12.5 278 343 14
Co-posite

The data indicate that the composite can be heat treated to achieve the same ductility as

the unreinforced matrix alloy (17 pct. elongation to failure) but at a lower strength. If the

processed composite is aged to attain the same strength as the unreinforced matrix a

somewhat lower ductility, 14 pct. elongation to failure, is obtained. This latter MMC

ductility is still well in excess of typical values reported for such materials. Indeed, higher

strengths with lower ductilities were obtained in the MMC upon full SHT of the MMC.

Eastwood [Ref 17] considered a single soaking temperature and conducted one test only
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for each final heat treatment condition. This work will examine a wider range of heat

treating and mechanical testing conditions in order to achieve a better picture of the

strength/ductility combinations attainable in this material.

B. EFFECTS OF THE PARTICLE DISTRIBUTION

The homogeneity of the particle distribution in Al-matrix MMC materials has been

recognized as a significant factor in composite ductility. The ductility improvements noted

in previous work in this laboratory [Ref. 10-17] have been attributed in part to

homogenization of the A120 3 particle distribution. Particles located in bands present in

extruded material were redistributed during processing although true strains !- 4.0 were

necessary to achieve homogeneous distributions. As the particle distribution became

progressively homogenized the matrix grain structures were refined by PSN of

recrystallization and this was proposed to be an additional factor in composite ductility

[Ref 10].

Osman, Lewandowski and Hunt and Lewandowski et al. [Ref 18,19] have also

conducted experiments to assess the influence of particle distributions on MMC

mechanical properties. They concluded that composite ductility was controlled by failure

mechanisms initiated within particle clusters for inhomogeneous particle distributions. As

the materials were processed to homogenize particle distributions MMC failure began to

be dominated by processes occurring in the matrix and c( rnposite ductility was seen to

improve.

Through analysis of finite element models of MMC deformation, Lorca, et al.

[Ref 20] identified two factors limiting composite ductility. The first limitation is due to

void nucleation at sharp comers of the reinforcement particles in association with strain

concentrations at such locations. The second limitation was acceleration of void

formation within particle clusters in the matrix. These analyses considered good
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particle/matrix bonding and it was noted that debonding in association with stress

concentrations would further accelerate void formation and further limit composite

ductility.

Homogeneity of particle distributions is generally assessed qualitatively.

Microstructures representing various stages of processing are often compared and particle

distributions are deemed more or less homogenous in a relative sense. The absence of a

quantitative measure of homogeneity for randomly distributed particles hampers our ability

to assess the particle distributions of microstructures. The characterization of particle

distributions in these Al - A120 3 materials is being examined in a concurrent study by

Longenecker [Ref 21 ].

C. MECHANISMS OF MATRIX MICROSTRUCTURAL REFINEMENT

Investigations [Ref 10-11] of matrix microstructural evolution during TMP of 6061

Al - A1.20 3 materials have shown that PSN of recrystallization may occur for appropriate

processing conditions. The associated grain refinement was suggested [Ref. 10-I 1 ] to be a

significant factor in ductility enhancement due to TMP for these conditions. The theory of

PSN was developed from studies on recrystallization due to dilute dispersions of particles

in single crystals deformed at ordinary temperatures [Ref. 22]. Subsequent work has

considered the influence of deformation temperature [Ref 24-25] and application of the

theory to processed MMC materials.

There are two essential prerequisites for PSN [Ref 22, 24] in deformed particle

containing materials. The first is the presence of local lattice rotations within the

deformation zones surrounding particles, and the second is sufficient strain energy stored

within the deformation zone to allow growth of an embryo of a recrystallized grain.

Bigger particles provide larger deformation zones for a given strain and so conditions for

recrystallization are achieved more readily at larger particles. Thus, with smaller particles
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more strain is required to initiate recrystallization and there may be a practical lower limit

of zl.Opm -for particles to serve as nucleation sites in deformed Al alloys [Ref. 22-241. If

all particles in a dispersion serve as nucleation sites the grain size can be estimated

[Ref. 24] from the relationship

S~(l)

where DpsN is the recrystallized grain size, dp is the particle size and fv is the volume

fraction of particles. The results of this prediction are summarized in Table 2 and Figure I

for the materials of interest in this work.

TABLE 2 -PREDICTED GRAIN SIZE (PSN THEORY).

Volume Fraction Particle Diameter Predicted Grain Size

0.10 12 .5p 26

0.20 19 p 41

The processing in this work involves rolling at elevated temperatures. At sufficiently

high temperatures, recovery by dislocation climb may preclude formation of lattice

rotations within deformation zones at particles. This problem has been addressed by

Humphreys and Kalu [Ref. 24] who have provided an equation to estimate the critical

strain rate e, above which deformation zones are expected to form during elevated

temperature straining:

Kexp(_11)+K2 exp-_ (2)
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Figure 1. Grain size predicted on basis of particle stimulated nucleation of
recrystallization.

where K, and K2 are constants, R and T have the usual meaning, Q, is the activation

energy for volume diffusion, and Qb is the activation energy for diffusion in the

particle/matrix interface. Usually, the second term dominates [Ref 24] and

& eA ( e Qb) (3)
7dý' RT)

and this has been shown to describe the conditions for the onset of PSN in particle-

containing Al-Mg materials [Ref. 2, 23-24]. For appropriate values for Qb and K2

[Ref. 2, 23-24], Equation 3 may be plotted to provide estimates of the relationship

between strain rate and temperature for which PSN is expected in the 6061 Al - A120 3

materials of this research. These are shown in Figure 2. Each curve defines the
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temperature as a function of particle size below which PSN is expected at the indicated

strain rate.

700

6oo 10

.5 00

400
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Figure 2. Critical temperature below which stresses will accumulate at particles for
the constant strain rates (sec-1)

D. DIRECTION OF THIS EFFORT

This research will first consider procedures for the forging and rolling of cast 6061

Al - AI20 3 materials containing either 10 or 20 volume percent of particles. The TMP

methods will be adapted from those previously employed in processing of superplastic A]-

Mg materials [Ref 2-9]. Evolution of both particle distributions and matrix

microstructures will be observed at various stages of the processing and attention will be

given to possible particle damage during processing. Mechanical properties of the

processed materials will be assessed and correlated with microstructure.
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III. EXPERIMENTAL PROCEDURE

A. AS RECEIVED MATERIAL

1. Casting

The Al 6061 10 v/o or 20 v/o A120 3 billets provided by the manufacturer,

DURALCAN-USA of San Diego, CA, were sectioned and machined from a 7.0 in

(17.8 cm) diameter by 20 in (50.8 cm) long direct chill casting by the manufacturer The

billet dimensions were 1.75 in x 2.0 in x 3.0 in (44 mm x 51 mm x 76 mm). The two inch

dimension was parallel to the axis of the casting (Figure 3).

-77

20T
Casting section

Cast 81.

continuous chi 2
castdirection(axis)

Figure 3. Material provided by DURALCAN-USA

The 6061 Al - A120 3 MMCs provided by DURALCAN contained either 10 or 20

volume percent of alumina particles with mean particle diameters of 12.5 pm or 19 pm,
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respectively. The matrix compositions were provided by DURALCAN [Ref 26] and are

given in Tables 3 and 4.

TABLE 3. 6061 AL-10 V/O AL20 3 MATRIX COMPOSITION ANALYSIS

Si Fe Cu Mn . Cr Zn Ti Be Sr

0.57 0.07 0.25 <0.01 1.05 0.12 <0.01 0.01 --

TABLE 4. 6061 AL-20 V/0 AL 2 0 3 MATRIX COMPOSITION ANALYSIS

Si Fe Cu LMn g Cr Zn Ti Be Sr

0.05 0.05 0.27 <0.01 1.00 0.12 0.01 0.01 -

2. Reference 6061

The 6061 -T6 Aluminum plate used to provide data applicable to the

unreinforced matrix was also tested by DURALCAN [Ref 27] and composition data is

provided in Table 5.

TABLE 5. 6061-T6 PLATE COMPOSITION ANALYSIS

0.67 0.48 0.22 0.11 1.03 0.17 0.14 0.03 0.0002 -

Samples of the as received cast ingot castings were sectioned for investigation

of the particle distribution and grain structure.
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B. THERMOMECHANICAL PROCESSING

The thermomechanical process (TMP) and subsequent test plan are is illustrated in

Figure 4.

COMPOSITE REFERNCE MATERIAL

PROCESS PATH PROCESS PATH

CHILL CAST o081
PLATE

SECTION INTO HOMOGENIZE
FORGE BILLETS MONIZE90 MINUTES s~oc

HOMOGENIZE 530C
20 HRS

FORGE 2 1/2 min 0 5OO-530C

WQ 25C

REHEAT
TO WORKING 5°°C

TEMPERATURE

ROLL IPA- 5 or 30 min at 500C

Wo 25C

MACHINE
TENSILE
COUPONS

SOLUTION Tensile
HEAT TREAT -- 15C Age &

Harden Hardnesm
-*500C • Testing

160C

Optical
MWSPY

Figure 4. Material processing and evaluation flowpath
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1. Solution Treatment

Billets of the 10 v/o or 20 v/o composite were solutionized 20 hrs at 530°C in

order to insure homogeneity prior to forging using a Lindberg electric laboratory box type

furnace. The 6061-T6 plate was solutionized 90 minutes at 560°C to eliminate the effects

of the aging treatment on the material prior to rolling.

2. Forging

a. Procedure

The MMC billets were removed from the solution treatment furnace and

were placed in a heated-platen press. They were upset forged from a an initial thickness

of 3.0 inch ( 76mm) to a final thickness of 1.0 inch ( 25 mm) using gage blocks as press

stops (Figure 5).
Control Thermocouple

-- Insulation

Heater Elements

S... Forge Billet
Limit gage blocks

Figure 5. Heated-platen press (forge) arrangement.
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Pressing duration was 150 sec ±10 sec, corresponding to a forging rate of

--0.013 in/sec (0.33 mm/sec). Platen temperatures were controlled at 480 to 5000C and

extreme care was given to not exceeding 500°C platen temperatures in order to avoid

overtempering of the platen material. Prior to heating the platens were sprayed with

silicone lubricant to prevent the forged billet from sticking to either of the platen faces.

b. Calculations

Computations for the forging portion of the processing schedule included the

engineering strain, true strain and maximum forging strain rate (Equations 4-6). The

engineering strain is given by

_ T= -T1  (4)

T.
where To = the initial thickness and T' = the final thickness after forging. the true

strain is given by

C,u = ln(l + c) (5)

while the forging strain rate is given by

.T
A = (6)At

where AT = is the thickness change and At = the total time (sec).

c. Sample processing schedule

Rolling schedule data was processed via a spreadsheet program as illustrated

Table 6. A complete set of rolling schedules is presented in Appendix A (Tables 8-13).
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TABLE 6. PROCESSING SCHEDULE FOR 6061 AL-10 V/0 AL 20 3 (HEAT 1-1169)

Roll # To (in) Tf (in) Mill Gap Mill strain rate e (in/in)
Setting Deflect (1/sec)

(in) L - -

1 1.010 0.925 0.900 0.025 0.867 0.088
2 0.925 0.806 0.790 0.016 1.140 0.138
3 0.806 0.702 0.680 0.022 1.224 0.138
4 0.702 0.592 0.570 0.022 1.462 0.170
5 0.592 0.474 0.460 0114 1.829 0.222
6 0.474 0.375 0.350 0.025 2.102 0.234
7 0.375 0282 0.265 0.017 2.622 0285
8 0282 0.220 0.195 0.025 2.810 0.248
9 0.220 0.169 0.140 0.029 3285 0264
10 0.169 0.124 0.100 0.024 4.082 0.310
11 0.124 0.093 0.070 0.023 4.582 0288

Total - M 7
Rolling Strain *2.385•

maxe
Forging (1/sec)

1 3 1.01 1.089

_Total Strain 3.474

3. Rolling

a. Procedure

The same thermomechanical process (TMP) schedules were utilized for the

10 and 20 volume percent composites and for the unreinforced 6061-T6 plate. A 500*C

interpass anneal temperature was used for either 5 or 30 minutes of annealing between

passes (Table 6).

b. Calculations

Computations for the rolling portion of the processing schedule included

the rolling mill deflection (equation 7), the engineering strain (equation 4), the true strain

(equation 5), and the average rolling strain rate (equations 8) for each pass.
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The mill deflection is

MillDeflection = T,"_,v - T,. (7)

Finally the rolling strain rate [Ref, 28] is given by

•,

6=FR 1+ (8)

where V, = 2 xRn(in/ sec), n speed of the roller (rev/sec), R = Roller radius (in),

h. = T. = initial sample thickness (in), and e= engineering strain defined in eq. (4)

C. TENSILE TESTING

Tensile test data obtained from the Instron Model 4705 Tension Tester were

processed with a Zenith 286 P.C. and plots of engineering stress vs. engineering strain

were obtained from the Instron SERIES IX Materials Testing System program. Test data

acquisition rate was two data points per second. The system stored the raw data as load

(lbf) and extension (in). Test data was backed up on 360 K 5 1/2" data disks as

compressed system files and uncompressed ASCII files to allow for further analysis of the

test results. All tests utilized a constant cross head speed of 0.5 mm/min. All tests were

conducted at f20-25*C. The program reports also provided ultimate tensile strength and

total strain to fracture.

1. Machining

Tensile test coupons were machined from rolled billets to the dimensions

shown in Figure 6. The composite materials were highly abrasive and thus all cutting and

machining was accomplished utilizing diamond or cobalt cutting/milling tools.
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Figure 6. Tensile Test Specimen Drawing (All dimensioms are in incbes)

D. DATA REDUCTION

Data was convened and exported from the Instron compressed file format into ASCII

files. Using Microsoft Word the raw data could be then pasted to Cricket Graph and

edited remove data points past peak true stress for the plots of true stress vs true strain.

Microsoft Excel was used for all tables and for reduction of the raw hardness data.

Graphing of hardness and tensile test data was accomplished in Cricket Graph.

E. AGE HARDENING STUDY

An aging study was conducted to determine the aging response of the materials using

hardness as a concurrent measure of the ultimate tesile strength (UTS). The coupon

hardness was tested -i a Rockwell Hardness Tester (Model Nr IJR) using the "F" scale

(60 kg mass and 1/16' dia ball penetrator). The test coupons were then tested on the

Instron. The hardness and tensile test results are graphically represented in the Results

and Discussion section and Appendix C while the data tables are contained in Appendix B.
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1. Solution Treatment

A portion of sample material was cut from all final rolling passes. On

completion of rolling the material was immediately water quenched to preserve it in the

as-rolled state prior to sectioning into tensile coupons. Coupons were then solution

treated at 560, 530, 500 or 480*C for I hour prior to aging.

2. Aging Temperature

The aging temperature of 160*C was selected on the basis of handbook

data [Ref. 29] and previous work done by Schaefer [Ref. 13], whose study was conducted

at 160 0C, and also Eastwood [Ref. 17] who used 160*C as a middle temperature for aging

studies.

3. Composite vs. Unreinforced Aluminum

The unreinforced aluminum was processed and aged under the same

conditions as the 10 or 20 volume percent composite to provide a control set in order to

evaluate the response of the composite materials.

F. OPTICAL MICROSCOPY

Both composite materials and the unreinforced 6061 aluminum were examined with

an optical microscope (Zeiss ICM-405 Optical Microscope) to asscess particle

distribution. Photographs were taken with Polaroid Type T-55 positive/negative film.

Samples were anodized and 35 mm photographs were taken with Kodak TMAX 100

B&W film using a Zeiss Photographic Microscope with a vertical eyepiece adapter to a

Nikon 35 mm SLR camera. The film was developed at 68°F (200C) for 13.5 minutes

using Microdol Developer and then standard times for stop and fix baths.
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1. Polishing Schedule

The polishing schedule utilized by Eastwood [Ref. 17] was revised and adapted

for this work to reflect the availability of new grinding equipment (Knuth Rotor Grinders)

[Ref. 30]. Standard polishing techniques for optical polishing requires grit size selection

to be reduced approx 50 percent at each step. Utilizing this as a basis the schedule

summarized in Table 7 was developed.

2. Anodizing Procedure For Grain Size Evaluation.

A Barkers Reagent solution was prepared from 55 ml HBF4 (48-50% solution),

945 ml distilled water, and 7 gm Boric Acid. Samples were anodized using a DC power

supply set at 10 Volts. The sample served as the circuit anode. The negative (black) lead

was connected to the metal beaker with magnetic stirring for solution agitation. The

samples were placed in an agitated solution for 30 to 40 seconds and then checked at 10

second increments of anodizing in order to obtain the optimum contrast enhancement

under cross polars and to prevent over anodizing [Ref. 311
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TABLE 7. SPECIMEN POLISHING ABRASIVE SCHEDULE

Step Polishing Grit Size Grit Dia Time VWheel Comments
Numbtqr Medium -(rnRPMmnrnin) RPM

I Carbide 230 46 0.5 12"dia 1-5 Ibf*
paper 300 rpm

2 Carbide 500 30 0.5 12"dia 1-3 lbf*
paper 300 rpm

3 Carbide 1000 18 2 12"dia 1-3 lbf *
paper 300 rpm

4 Carbide 2400 10 3 12"dia 1-3 Ibf*
paper 300 rpm

5 Carbide 4000 5 3 12"dia 1-3 lbf
paper 300 _pm

6 diamond spray 6 6-9 12"dia 1-3 lbf
w/ Metadi etender 250 rpm

chermtex cloth
7 diamond spray 1 6-9 12. 1-2 lbf

w/ Metadi extender 250 rpm
mnicrodoth

8 Collodial 0.05 1 12"dia 1-2 lbf
Silica Slow spd

ricrodoth

• Start at upper pressure and gradually ease off until light pressure is applied at end of

stage. For the carbide abrasive paper insure that water flow is adequate to insure sufficient

lubrication for best cutting effect.
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21



IV. RESULTS AND DISCUSSION

A. PROCESSING RESULTS

1. Homogenization Heat Treatment

In a preliminary study, blistering was observed during homogenization treatments

conducted at 560*C on MMC billets initially supplied. Subsequently it was found that

matrix composition for this initial material was out of specification for 6061 and new

materials were provided (designated as heats 1-1169 and 1-1095). Subsequent

homogenization heat treatments were conducted for 20 hours at 530"C for both composite

compositions and no further blistering was observed.

2. Forging

Initial hot working of all materials was accomplished by upset forging on heated

platens immediately after completion of the homogenization treatment. Billets were

transferred directly from the 530°C furnace. At first, sample billets were upset forged

utilizing platen temperatures of 400°C and a press rate of 0.07 to 0.10 in/sec (1.7 to 2.5

mm/sec) corresponding to or a nominal strain rate of 0.03 sec-1 , such that upsetting was

completed in 20 to 30 seconds. Relatively severe edge cracking associated with frictional

constraint was observed for these conditions (Figure 8) [Ref. 28]. Increasing the platen

temperatures to 480-500°C decreased the severity of the edge cracking and reduction of

the strain rate to a nominal value of 0.020-0.025 sec"1 eliminated nearly all surface

indicators of edge cracking (Figure 9).

3. Rolling

Rolling was conducted with reheating between successive passes. In all cases the

interpass annealing (IPA) temperature was 500°C. IPA times were either 5 or 30 minutes;
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for a 5 minute IPA the furnace temperature fluctuated about 10°C during processing.

Most of the billets were rolled without edge scarfing to remove the barreled regions from

the lateral surfaces of the forgings. In several cases this resulted in severe edge cracking

(Figure 10) which was later removed prior to machining tensile coupons. Alligatoring of

the composite billets took place during rolling for thicknesses from 0.45 inches (12 mm)

downward to 0.25 inches (6 umm). This cracking was limited in all cases to a region

extending about 0.75 inches (18 mm) inward from the ends of the billets which were

immediately re-rolled to close the cracking prior to being returned to the furnace for the

IPA. Both edge cracking and alligatoring were more severe in the 20 vol. pct. MMC

material. However, rolling with the 30 minute IPA resulted in less severe cracking for

both particle volume fractions examined in this program.

Figure 8. As-forged billet of 6061 Al - 10 vol. pct. Ai20 3 with severe
longitudinal cracking for an upset forging rate of 0.07 to 0.10 in/see.
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Figure 9. As-forged billet of 6061 Al - 10 voL pct. A120 3 with only traces of

longitudinal cracking following use of an upset forging rate of 0.02 to 0.025 in/sec.

The lateral surfaces of one billet were scarfed prior to rolling. In this case only

minor edge cracking was experienced near the end of the rolling (Figure 11). The

tendency to alligator was reduced as well. It is possible that industrial practices involving

scarfing, use of edge rolls and mill rolls of larger diameters would significantly reduce the

alligatoring problem encountered. Alligatoring is caused by stresses resulting from

friction effects and sliding at the roll/workpiece interface as the material experiences

longitudinal acceleration during the rolling pass. In all cases silicone spray was used to

provide lubrication of the rolls. This was applied between rolling passes and prevented

sticking of the MMC material to the roll surfaces.

The 3:1 reduction in height during upset forging corresponds to a true strain of

about 1.1 while a true strain of 2.4 was imparted during rolling. Thus, the total strain

during processing amounted to 3.5 for the composites (forging plus rolling). In contrast

the strain added to the 6061-T6 plate during rolling was 2.4. The strain imparted during

original manufacture of the 6061-T6 plate is unknown. No edge cracking or alligatoring

was observed during processing of this unreinforced reference material.
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Figure 10. A rolled billet of 6061 Al - 10 vol. pct. A120 3 exhibiting severe edge
cracking. This billet had been scarfed prior to machining with approximately 36%
wastage.

Figure 11. Rolled billet of 6061 Al - 10 vol. pct A120 3 showing minor edge
cracking. The billet had been scarfed prior to rolling (with -30 % wastage) and
prior to machining (with -5 to 10% additional wastage).

4. Machining

Although diamond-impregnated bandsaw blades were utilized in sectioning of

these materials prior to machining, extremely high blade wear rates were encountered.

However, samples were satisfactorily milled using tooling with diamond inserts. The gage

sections of the tensile test coupons were satisfactorily milled using a cobalt milling cutter.

Coupons were gang machined in blocks of 15 yielding highly uniform tensile specimens.
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With the 20 vol. pct. A120 3 composite the cobalt cutters tended to burnish the material

and smear the edges into the next coupon. This edge defect was removed by flat grinding

prior to tension testing.

5. Tensile Testing

Tensile coupon design was deemed satisfactory. Fracturing occurred within the

middle 2/3 of the gage section except for the 20 vol. pct. A120 3 MMC following solution

heat treatment at either 530 or 560°C. For these process conditions the material was very

sensitive to stress concentration at the extensiometer knife edges (Figure 12). In these

cases the coupons failed prior to attaining an ultimate tensile strength.

Section of tensile coupon

40 Elastic band holding extensiometer

Extensiometer knife edge

Area of stress concentration

Figure 12. Schematic detail of extensiometer contact point with the tensile
coupon illustrating the stress concentration point.
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B. OPTICAL MICROSCOPY RESULTS

1. The Unreinforced 6061 Material

a. The as-received condition

The as-received 6061 was in the form of a plate 26 mm in thickness obtained

from stock available at NPS. The microstructure of this material (Figure 13) is typical of

rolled aluminum alloys and exhibits highly elongated grains. Mechanical fibering of

inclusions is reflected in their alignment with the roliing direction. From the as-received

condition this material was subjected to the same procedures employed for the MMCs and

thus provides a basis of comparison of the data obtained on the composites.

b. The as-rolled condition

Rolling of the unreinforced 6061 material was conducted at 500°C with

either 5 or 30 minute IPA times, just as for the composites. In the as-rolled condition the

grains were further flattened and extended in comparison to the as-received material

although some of the grains appear shortened, suggesting that some grains may be pinched

off during this additional processing. There is little difference in the as-rolled

microstructure attributable to the different interpass anneal times. (Figure 14).
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Figure 13. As-received 6061 AI-T6 plate, illustrating the elongated grain
structure (grains Ilmm in length). The structure also shows inclusions aligned with
the rolling direction.

Figure 14. The as-received 6061 material illustrating the microstructure
after the final rolling pass (true strain of 2.4).
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c. Solution heat treated condition.

The effect of subsequent solution treatment on the unreinforced 6061 material

is shown in Figure 15. Grains have coarsened and now appear to be less highly elongated

than in either the as-received or the as-rolled conditions. The IPA time during prior

rolling again did not appear to have had a discernible effect on the grain size following

subsequent solution heat treatment. Also, there was relatively little effect of the solution

treatment temperature on the microstructure.

KIOOk-N

Figure 15. The rolled and solution heat treated 6061 (5 minutes IPA time)
illustrating the microstructure after solution treatment 480°C for 1 hr.

2. 6061 Al - 10 Vol. Pct. A120 3

The influence of forging and subsequent rolling on the distribution of the A120 3

particles was assessed metallographically on unetched samples examined with

conventional light microscopy methods. The matrix microstructure was examined using

polarized light techniques in conjunction with anodized samples. These methods allowed
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evaluation of MMC processing parameters on both the reinforcement particle distribution

and the matrix microstructure.

a. Particle redistribution during processing

The particle distribution in the as-cast material was highly non-uniform as can

be seen in Figure 16. This likely is due to segregation of particles into interdendritic

regions during solidification. The particle distribution in this as-cast material appears

somewhat more uniform than that reported by Schaefer [Ref. 13] on an older heat

representing an earlier version of this same MMC composition. This suggests that

improvements have been made in the casting process for these MMC materials. Close

inspection of the micrograph of Figure 16 also reveals the presence of relatively fine

Mg 2Si second phase particles.

The uniformity of the A120 3 distribution was improved by the forging

operation, which involved a true strain of about 1.0, but the particles are not yet

homogeneously distributed (Figure 17). Instead, the clusters have changed in shape,

reflecting the forging strain, and particles within the clusters now appear to be more

widely separated. These clusters will result in banding upon subsequent rolling.

In this work, the particle distribution was examined again after the completion

of the final rolling pass. At that point, the total processing strain (forging + rolling) was

3.5 and the particle distribution appears to be nearly uniform and homogeneous as shown

in Figure 18. Some banding is evident and particles are aligned in the rolling direction. In

a closely related study, Longenecker [Ref. 21] has considered this redistribution of

particles during processing in greater detail and has compared observed and computer-

simulated particle distributions. It was noted that there is no quantitative measure of

uniformity or homogeneity for such distributions but that a processing strain f5.0 resulted

in observed distributions which were indistinguishable from simulated random

distributions.
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Figure 16. A micrograph of the as-cast 6061 Al - 10 vol. pct. A120 3 composite
illustrating the inhomogeniety of the particle distribution.
Polished (not etched).
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Figure 17. The forged 6061 - 10 vol. pct. A120 3  MMC illustrating
redistribution of the particles during straining. Polished (not etched).
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Figure 18. The as-rolled 6061 Al - 10 vol. pct. A203 composite illustrating
further redistribution of the particles during rolling. Polished (not etched).

b. Effect of processing on the matrix microstructure

The matrix of this MMC in the as-cast condition displays large. irregular

grains of 0.25 - 0.30 mm (250 - 300ýim) diameter. Relatively fine Mg2Si precipitates are

evident and close examination indicated the presence of inclusions which were judged to

be Fe or Si phases formed during casting shown (Figure 19). A coarse grain size such as

this has been suggested to confer low matrix strength [Ref. 18. 221 in the composite.

Homogenization to facilitate hot working was accomplished by heating for 20 hours at

530°C and the result of the treatment is shown in Figure 20. Resolutioning of the Mg-Si

is apparent: the homogenization treatment had no effect on either the particle distribution

or the matrix grain size.

The grain shape change during forging is similar to the redistribution of

particles occurring during this process. Unrecrystallized grains have become flattened
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(Figure 21) while partial recrystallization has resulted in the formation of some grains near

the size predicted by PSN (Figure 1). The unrecrystallized grains appear to be about

20pm in thickness. Approximately 5-10% of the grain structure appears to be

recrystallized to sizes varying from z5gm to m30pm, reflecting the non-uniform particle

distribution.

After the final rolling pass, a refined but distorted grain structure is developed

as shown in Figure 22. A similar fine-grain structure was observed for both IPA times and

grain sizes of about 18pm were measured in each case. Such a structure likely reflects

successive PSN of recrystallization during the reheating intervals between latter passes of

the rolling schedule and the distortion due to the rolling deformation is retained

immediately following completion of the final pass. The effect of reheating the as-rolled

material (either IPA time during prior rolling) for five minutes at 500°C is shown in

Figure 23. The deformed grains present after the final rolling pass have been replaced by

fine, equiaxed grains and the structure appears to be completely recrystallized. PSN of

recrystallization has been shown [Ref. 9] to occur with a five-minute IPA during

processing of this material at 350°C and the deformation parameters met the conditions for

PSN given by Humphreys [Ref. 17] for the 12pm particles in this MMC. Little further

change in the matrix grain structure is seen upon heating of this material for one hour at

560°C for solution treatment (Figure 24). It is noteworthy that many grains appear to have

six sides, indicating a narrow grain size distribution and a uniform, equiaxed structure.

Neither the solution treatment temperature nor the IPA time during prior rolling had any

apparent effect on the recrystallized grain size following solution heat treatment. It

appears that PSN is the controlling mechanism and this corresponds to site saturation

during recrystallization. Thus grain growth will be limited once new grains impinge and

this is reflected by the large number of six-sided grains.
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Figure 19. The as-cast 6061 Al- 10 vol. pct. A120 3 composite illustrating a
coarse and irregular grain structure.

Figure 20. As-cast and homogenized 6061 Al - 10 vol. pct. A120 3 composite
illustrating the same grain structure and the resolutioning of the Mg 2 Si,
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Figure 21. The forged 6061 Al- 10 vol. pct. A120 3 MMC, illustrating grain
refinement of the matrix.

Figure 22. The as-rolled condition for the 6061 Al - 10 vol. pct. A1,0 3

material illustrating distortion by rolling deformation of a previously recrystallized
grain structure.
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Figure 23. Reheating of the rolled 6061 Al - 10 vol. pct. A120 3 material for 5
minutes at 500'C results in PSN of recrystallization.

Figure 24. The effect of solution heat treatment for one hour at 560°C on the
rolled 6061 Al - 10 vol. pct. A120 3 composite, showing PSN of recrystallization. The
particle spacing appears to be the controlling factor in grain size.
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3. 6061 Al - 10 VoL Pct. A120 3

a. The particle distribution

The AI20 3 particles in this as-cast MMC material appear to be more

uniformly distributed in comparison to the particles in the lower volume fraction

composite. This may be seen by comparing Figure 25 (20 vol. pct.) to Figure 16 (10 vol.

pct.). The larger particles are apparently less affected by growing dendrites during

solidification and thus are less segregated in the as-cast condition. The only other features

noted were the relatively fine precipitates of the Mg 2Si phase. The forging process has

resulted in some particle redistribution and a nearly homogeneous structure is achieved at

this point in the processing as shown in Figure 26.

The forging and rolling processes employed with this 20 vol. pct. MMC were

identical to those used with the lower volume fraction material. At the completion of the

final rolling pass (total forging + rolling strain of 3.5) some further homogenization of the

particle distribution is seen (Figure 27). Many of the finer particles in this material are

elongated, with an aspect ratio of 2-3 and these have become oriented with their long

dimension parallel to the rolling direction.
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Figure 25. The particle distribution in the as-cast 6061 Al - 20 vol. pct. A120 3

composite illustrating greater homogeneity than apparent in the 10 vol. pct. A120 3

material (see Figure 16). As polished (not etched).
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Figure 26. The forged 6061 Al 20 vol. pct. A120 3 MMC, illustrating
improved homogeneity of the particle distribution. As-polished (not etched).
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Figure 27. The rolled 6061 Al 20 vol. pct. A120 3 material showing an
essentially homogeneous particle distribution but with the alignment of particles in
the rolling direction. As polished (not etched).

b. Effect of processing on matrix microstructure in the 20 vol. pct. A 1,03
MMC.

In the as-cast condition the matrix of this MMC displays a coarse. irregular

structure with a grain diameter of about 0.25 to 0.30 mm (250 - 300pt) when the sample is

anodized and viewed under crossed polars. Numerous, fine particles of Mg2Si as well as

Fe and Si containing precipitates formed during casting are also apparent as shown in

Figure 28.
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Figure 28. The as-cast 6061 Al - 20 vol. pct. AI0 3 composite showving
coarse, irregular grains. Anodized and examined under crossed polars.

The homogenization treatment (530°C for 20 hrs.) caused resolutioning of the

soluble phases, in particular the MgSi. There was no apparent exidence of

recrystallization in the matrix due to the homogenization and a coarse and irregular grain

structure similar to that in the as-cast material was seen (Figure 29).
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Figure 29. The as-cast and homogenized 6061 Al - 20 vol. pct. A-O 3
composite illustrating the same coarse and irregular grain structure as in the as-cast
condition. Anodized and examined under crossed polars.

Followving the forging operation. a completely recrystallized grain structure

was observed in this 20 vol. pct. AIlO 3 material (Figure 30). The grain size corresponds

reasonably well to the value dictated by the PSN theory for particles of the size present in

this %IMC and the largest observable grains are about 40 Prm in size.

The grain structure immediately following the final rolling pass is shown in

Figure 3 1. In spite of the quenching effect of the rolls and rapid cooling of the relatively

thin as-rolled sheet. recrvstallization has begun and some regions appear to be fully

recrvstallized. Thus recrystallization due to PSN is rapid. Grain size values were the

same Ibr both 5 and 30 minute IPA times indicating again that there is little grain grow\th

upon completion of recrystallization. For material rolled with the 5 minute IPA a coupon

was reheated for 5 minutes. at 500'C and the matrix microstructure was then examined.

It is fully recrystallized, as showvn in Figure 32. and the grain size is essentially the same

as seen in the as-rolled material (Figure 31).
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Figure 30. As-Forged 6061 Al - 20 vol. pct AI20 3 composite illustrating PSN
of recrystallization in the grain structure on completion of forging.

Figure 31. As-rolled 6061 Al 20 vol. pct. Ai,0 3 composite illustrating
deformation by rolling of the previously recrystallized grain structure.
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Fioure 32. Rolled 6061 Al - 21) vol. pet. A-I0() composite illustrating complete

PSN of recnstallization after reheating of a coupon for 5 min. at 500o('.

lhere is little tuither chance in microstructure n te Ilo\\ ine s ,lutiot• heat

rteatetncnt. Ihe matrix urain structure is shown in l:icure 33, ftr mate.ial \\xx hich has ceen

rolled x,,ith a 310 mitnute IP. and then solution heat treated fttr one hour at ;(1

(t ~niparisotn ot this structure to those shoxx n in lFicure., 3i• and 32 rex cal,, little si enit cntt

di ttrencc t Il aini nation of ilicrostructures tollo\xxin solution heiat iretitment atl\ anon

temperatures, show, ed that neither the solution treatment temperature nor the IP.A\ 1i1m

altt'cted the rccr\,stall ied -rain size. It again appears that P."\,N is the cortnllinc

mechanism in the rccr\ stall i ation and that ,roth occurs on01 Lint i tile nexx,,\ It rmed
crain> impince m ano1ther one. Ift ssentiallI all particles arc nucleation site, t hen the

craim ,ilc xill he given bh, the particle Spac itrL. It is .+ail n ut tc\,xorth\ that the
,ecrr.stallilced grains are equiaxd and often six sided. lhis is consistent ,. ith

<it nuiltaneous nucleation of the grains at utnil'Orml,, distributed sites x, hich esult> in turnL ill

a un i h rtn. narroxxlv distributed cramn size in the material.
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Figure 33. The microstructure of a rolled and solution heat treated 6061 - 20
vol. pct. A120 3 composite illustrating complete recrystallization via PSN. Solution
heat treatment was for one hour at 560'C. Anodized and viewed under crossed
polars.
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C. HEAT TREATMENT AND MECHANICAL PROPERTIES

1. Unreinforced 6061

The effect of processing parameters on subsequent heat treatment response of the

unreinforced 6061 alloy was evaluated to provide a basis for comparison to corresponding

composite data. Solution heat treatment temperatures varied from 480 - 560'C;

subsequent aging was always accomplished at 160°C. The data for unreinforced 6061

revealed no dependence on the IPA time of the prior TMP schedule and this is consistent

with the similarity of microstructures for the material when processed with either of these

IPA times. Figures 34 - 37 present ductility, yield strength, tensile strength and hardness

data for aging following rolling with the 30 min. IPA time and these data are representative

of that for the material processed with the 5 min. IPA Data in graphical form for the 5

minute IPA are presented in Appendix C for ductility, yield strength, ultimate strength and

hardness. In all cases, the data plotted for one minute aging time correspond to the

solution treated condition.

The ductility of this unreinforced 6061 material depends only weakly on solution

heat treatment temperature. On the other hand, use of higher solution heat treatment

temperatures substantially imp-.cves the subsequent aging response and raises the peak

strength and hardness of this material. This likely reflects an increased solute content in the

solid solution upon solution treatment at higher temperatures and therefore the attainment

of a greater precipitate volume fraction during subsequent aging. The data obtained here

for solution heat treatment at temperatures 530 - 560°C is identical to Handbook data [Ref.

29] for the same heat treatment conditions. A peak yield strength of 275 MPa occurred at

13.3 hrs. of aging at 160°C following solution heat treatment at 530°C in the data of this

work and these data are identical to Handbook [Ref 29] values for this alloy.
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Figure 34. Plot of elongation versus aging time for unreinforced 6061
material processed utilizing a 30 min. [PA during rolling at 5000 C. Data are
included for four different solution heat treatment temperatures.
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Figure 35. Plot of yield strength versus aging time for unreinforced 6061
material processed utilizing a 30 min. IPA during rolling at 500°C. Data are
included for four different solution heat treatment temperatures.
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Figure 36. Plot of ultimate tensile strength versus aging time for unreinforced
6061 material processed utilizing a 30 min. IPA during rolling at 500°C. Data are
included for four different solution heat treatment temperatures.
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Figure 37. Plot of hardness versus aging time for unreinforced 6061 material
processed utilizing a 30 min. [PA during rolling at $000 C. Data are included for
four different solution heat treatment temperatures.
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2. The 6061 - 10 VoL Pct. Al 203 MMC

Figures 38 - 41 illustrate the mechanical property data obtained following heat

treatment of the 10 vol. pct. material. No dependence on the IPA time during rolling was

noted, except for lower solution heat treatment temperatures. Then, a small improvement

in ductility was found for the 30 minute IPA material. Only the data for material

processed with the 30 minute IPA time will be presented in this section: data for the 5

minute IPA material is summarized in the Appendix. (Appendix C provides graphical

presentations of the tabular data in Appendix B for the 5 minute IPA material.)

The most notable difference between the aging response of the composite and that

of the unreinforced 6061 is an increase in the ductility associated with the use of lower

solution heat treatment temperatures. The ductility obtained for the peak-aged condition

following solution treatment at 480*C was about 10% elongation to failure. In contrast,

lower ductilities of 6 - 8 % elongation accompanied solution heat treatment at higher

temperatures of 530 - 560*C. The yield and ultimate strength and the hardness data all

exhibited the sanme trends as seen in the data for the unreinforced material in that increased

solution treatment temperature resulted in improved aging response. Comparison of the

data in Figures 34 - 37 with those in Figures 38 - 41 reveals that the composite is always

stronger but less ductile for otherwise identical processing and heat treating conditions.

Thus, the addition of particles results in strengthening of the material as well as an

increased modulus of elasticity. Values of Young's modulus, E, were determined by

measuring the slopes of the elastic portions for the stress-strain curves obtained in this

study. The average value for this 10 vol. pct. material was 85±5 GPa.

Significantly higher ductilities were reported for heat treated material in previous

research on additional TMP by rolling of an initially extruded 6061 Al - 10 vol. pct. A120 3

MMC [Ref. 171 . The total strain achieved in processing of the MMC was > 5.0 in
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Eastwood's work [Ref 17] while that attained by the forging and rolling of this research

was about 3.5. In a parallel study by Longenecker [Ref 211, particle redistribution during

processing of this 10 vol. pct. MMC material was examined metallographically. Processing

methods included the rolling of this study as well as combinations of extrusion operations

involving strains up to -5.3 [Ref 17]. Improving homogeneity of the particle distribution

was noted by Longenecker [Ref. 21] for strains exceeding 3.5 and on up to the largest

value attained. Thus, it appears that the tensile ductility of this material is quite sensitive to

the particle distribution. Also, improvements in distribution achieved through process

control, including solidification as well as deformation processes, will likely result in better

ductility in the final product.

6061 Al- 10 v/o A1203 30 min IPA at 500C
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Figure 38. Plot of elongation versus aging time for 6061 Al - 10 vol. pet.
A120 3 material processed utilizing a 30 min. IPA during rolling at 500°C. Data are
included for four different solution heat treatment temperatures.
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Figure 39. Plot of yield strength versus aging time for 6061 Al - 10 vol. pct.
Al203 material procese utilizing a 30 rain. I[PA during rolling at 500°C. Data are
included for tour different solution beat treatment temperatures.
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Figure 40. Plot of ultimate tensile strength versus aging time for 6061 Al - 10
voL pct. AI 2O3 material processed utilizing a 30 min. IPA during rolling at 500DC.
Data are included for four different solution beat treatment temperatures.
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6061 Al - 10 vlo A1203 30 min IPA at 500C
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Figure 41. Plot of hardness versus aging time for 6061 Al - 10 voL pct. A120 3
material processed utilizing a 30 min. IPA during rolling at 500°C. Data are
included for four different solution heat treatment temperatures.

3. 6061 Al - 20 Vol. Pct. A120 3

A similar series of heat treatments were conducted on the 6061 A] - 20 vol. pct.

A120 3 MMC following completion of processing. Comparison of data for the two IPA

times utilized in the prior TMP again reveals a small improvement in ductility for material

processed with the 30 minute IPA time especially with lower solution heat treatment

temperatures. Figures 42 - 45 illustrate the mechanical test results for the material

processed with the 30 minute [PA as well. Data for the 5 minute IPA are included in the

Appendix. The 20 vol. pct. material is generally stronger but lower in ductility when

compared to the unreinforced and 10 vol. pct. materials.

The ductility of the 20 vol. pct. composite is improved by use of a lower solution heat

treatment temperature in a manner similar to that of the 10 vol. pct material. However, the

ductility is typically only about one-half that of the lower volume fraction composite even

though both yield and ultimate tensile strengths are similar for the same processing and heat
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treating schedules. The coarser particles present in the 20 vol. pct. composite might

fracture more readily and thus account for at least some ductility reduction.

Microstructural assessment of these materials following deformation to fracture was

beyond the scope of this work. The Young's modulus was computed as for the lower

volume fraction material and an average value of 92±4 GPa was obtained.

6061 Al- 20 vlo A1203 30 min IPA at 500C
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Figure 42. Plot of elongation versus aging time for 6061 Al - 20 vol. pct. A10 3

material processed utilizing a 30 min. L]PA during rolling at 500*C. Data are

included for three different solution heat treatment temperatures.
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6061 A- 20 vlo A1203 30 min IPA at 500C
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Figure 43. Plot of yield strength versus aging time for 6061 A] - 20 vol. pct.
A120 3 material processed utilizing a 30 min. IPA during rolling at 5000C. Data are
included for three different solution heat treatment temperatures.
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Figure 44. Plot of ultimate tensile strength versus aging time for 6061 Al - 20
vol. pct. A120 3 material processed utilizing a 30 min. IPA during rolling at 500*C.
Data are included for three different solution heat treatment temperatures.
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Figure 45. Plot of hardness versus aging time for 6061 Al - 20 vol. pct.
A120 3 composite material processed utilizing a 30 min. IPA dv,,'ng rolling at 500'C.
Data are included for three different solution heat treatment temperatures.

4. Ductility Considerations

Examination of the mechanical property data for the 10 vol. pct. MMC material

reveals that ductility enhancement can be accomplished by use of reduced solution heat

treatment temperatures in combination wvith short aging times. Thus, elongations of 10%

can be obtained with the 6061 Al - 10 vol. pct. A120 3 MMC by use of solution

temperatures of 480 - 5000C in combination with short aging times of 10 - 13 hours.

Corresponding yield strengths up to 270 MPa could be attained with this material for a

solution heat treatment of 500*C. Comparison of these results with the previous work by

Eastwood [Ref 17] demonstrates the importance of strain during processing and the

control of the reinforcement particle distribution. Higher ductilities of 10-14% elongation

were reported [Ref 17] for a processed and heat treated 10 vol. pct. AI20 3 composite
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containing 12prm particles. The essential difference in processing and heat treating appears

to be the total strain achieved in the TMP prior to heat treatment. The material evaluated

by Eastwood [Ref 17] had been subjected to a total strain of 5.8 while the material of the

current effort have experienced a strain of 3.5

The data of this research also indicates that 109/6 elongation is not attainable in the 20

vol. pct. material in heat treated material. Again, reduced solution heat treatment at lower

temperatures appears to offer some ductility benefit but overall ductility is likely to be

lower for this composite composition.
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V. SUMMARY

A. CONCLUSIONS

The following conclusions are drawn from this work.

1. As-cast material can processed by forging and rolling for suitable combinations of

process parameters.

2. The TMP resulted in redistribution of the reinforcement particles due to the staining

during processing.

3. Matrix grain refinement was achieved by PSN of recrystallization during processing.

4. The grain size of fully processed material can be estimated based on the PSN theory.

5. The TMP developed for the MMCs has little effect on the properties of unreinforced

6061 Al.

6. Enhanced ductility can be achieved for the MMC by processing to sufficient strain

and by selecting appropriate heat treatment conditions, especially the solution heat

treating temperatures.
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B. RECOMMENDATIONS FOR FURTHER STUDY

1. Further characterization of microstructure is necessary to quantify effect of processing

on particle distribution and on matrix grain structure. Methods should include pole figure

determination by X-ray diffraction as a further means to assess recrystallization

mechanisms.

2. Assess recrystallization during selected interpass anneals to determine the minimum

time necessary to achieve a fully recrystallized condition.

3. Investigate the relationship between ductility and aging time to determine factors

responsible for improved ductility in underaged samples.

4. Conduct particle size analysis to determine if there is significant particle fracturing

during processing.

5. Investigate overaging behavior of these materials to determine if the ductility may be

regained.

6. Investigate particle size analysis of the 20 vol. pct. composite to determine if particle

fracturing occurred during processing.

7. Investigate the effects on ductility of finishing temperature during the latter stages of

rolling. Reduced rolling temperatures were shown to produce a finer grain size in

previous studies.
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APPENDIX A

PROCESSING SCHEDULES
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TABLE S. PROCESSING SCHEDULE FOR 6061 AL USING °00C INTERPASS ANN EALS

(30 MiN ES)L
Roll # To (in) Tf (in) M11l Gap Mill strain rate e (infin)

Setling Deded (1/sec)
(n) (in)

1 1.027 0.925 0.900 0.025 0.939 0.105
2 0.925 0.805 0.790 0.015 1.146 0.139
3 0.805 0.695 0.680 0.015 1.264 0.147
4 0.695 0.587 0.570 0.017 1.462 0.169
5 0.587 0.480 0.460 0.020 1.744 0201
6 0.480 0.369 0.350 0.019 2.220 0253
7 0.359 0285 0265 0.020 2.508 0258
8 0285 0216 0.195 0.021 2.963 0277
9 0216 0.160 0.140 0.020 3.551 0.300
10 0.160 0.121 0.100 0.021 3.971 0.279
11 0.121 0.091 0.070 0.021 4.615 0285
12 0.091 0.086 0.070 0.016 2.306 0.057

Added
Rolling Strain 2.480

Total Strain Unknown

TABLE 9. PROCESSING SCHEDULE FOR 6061 AL USING 5000 C INTERPASS ANNEALS

(S MINUTES).

Roll # To (in) Tf(in) Mill Gap Mill strain rate e (inrin)
Setting Deflect (1/sec)

Oi n) (in)
1 1.027 0.927 0.900 0.027 0.929 0.102
2 0.927 0.812 0.790 0.022 1.116 0.132
3 0.812 0.702 0.680 0.022 1.252 0.146
4 0.702 0.591 0.570 0.021 1.469 0.172
5 0.591 0.484 0.460 0.024 1.731 0.200
6 0.484 0.375 0.350 0.025 2.176 0255
7 0.375 0285 0.285 0.020 2.570 0274
8 0285 0219 0.195 0.024 2.884 0.283
9 0219 0.166 0.140 0.026 3.380 0277
10 0.166 0.129 0.100 0.029 3.692 0252
11 0.129 0.090 0.070 0.020 5.068 0.360
12 0.090 0.085 0.070 0.015 2.332 0.057

Total
Rolling Strain 2.492

Total Strain Unknown
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TABLE 10. PROCESSING SCHEDULE FOR 6061 AL - 10 V/O AL20 3 COMPOSITE USING 50)OC
INTERPASS ANNEALS 30 MINUTES) HEAT 1-11169•.

K011 f 1 o (in) [TT (in) M11 G3ap Mill strain rata e (in/in)

Seuing Delect (/sed
(in) (in)

i 1.010 0.925 0.9w0 0.025 085 .8

2 0.925- 0.-W5 0.7wU 0.16 1.140 0.133
3 O. -D07AYF O.D7M30 .02 1.T- 7207 O 13

4 0702 0.52 .;b/• 0.701.U .2174
5 .520.474 0.4fb 0.014 1 .B9 0...

7 .375 O5 0.017 2.622 O.28

11 0. 124 0.093 0.0-M 0.023 4.532 0.2W8
Total

Rolling Strain 2.385
max strain rate

Forging (1/sec)
1 3.000 1.010 0.025 1.089

Total Strain 3.474

TABLE 11. PROCESSING SCHEDULE FOR 6061 AL - 10 V/0 AL20 3 COMPOSITE USING 5000 C
INTERPASS ANNEALS 5 MINUT S) (HEAT - 1169).

0oli 1O o in) Tt (in) iMill Gap Mill strain rate e Onfin)

Setting Delect (1/sec)
(in) (in)

1 1.010 0.920 0.90U 0.028 0.5 O.b

2 0.28 0.5 o.790 0.025 1.104 0.130
3 0.151b 0.69 0.6w0 0.015 1.291 0.5

4 .6 0.5 O7Bt 0.02 T1.0 O.15
5 0.596 0.478 0.400 0.018 1.1 0.1

. 0.. 2.53D 0.260
8 0.289 0.218 0.19b 0.023 2-.969- 0.282

1 .124 o.0 O.U7 0.023 4.582 0.28B
Total

Rolling Strain 2.385

max strain rate
Forging (1/sec)

1 3.0w0 1.1 .025 1.0m•

Total Stain 3.474
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TABLE 12. PROCESSING SCHEDULE FOR 6061 AL - 20 V/O AL20 3 COMPOSITE USING 500 0C
INTERPASS ANNEALS (30 MINUTES HEAT 1-1095).

1O4011 To (in) TfltinF MAl Gap Ml1 strain ra T e (intin)
Setting Deflect (1/sec)

(in) (in)
1 1.010 0.926 0.900 0-.02M.81 O.B

1 27 0.1925 0.810 0.79D 0.02U 1.173 a.13

3 O.210 .. U022 1 0.143

5 0.124 0.4 0, .13 1.5 0,

____ 0.473_ .3_ __,3___Rollin S 2.ain 2.345

7 0.370 0.2u4 0.265 0.01u 2.537 0.265
o .284 0,22 0.95- 0.02b5 z842 0.7m5

9 7- 0,22 0.69- -74 ,09 3295- 0.264

11 0. 124 O.U93 0.70 U CM0.02 4.U 08 .L'uu

ITotal
Rolling Strain 2.385

max strain rate
Forging (1/sec)

1 3.-uu 1.010 _21.]

Total Strain 3474

TABLE 13. PROCESSING SCHEDULE FOR 6061 AL - 20 V/O AL 20 3 COMPOSITE USING 5000C
INTERPASS ANNEALS (5 MINUTES) (HEAT 1- 1095.

0 o fin) ft (in) rill'Gap MiTII sirain raw e on/n)

Setting Deflect (1/sec)
(in) (in)

1 1.1 ~030.20 0,0 0.2 117 019

2 0.920 .. 7j9 0.031 1.037 0.114
3 0.21 03 0.68 23 17 .15

4 O./UJ 0.595 0.570 0-.02 145 . 6
5 0.595 0.480 0.460 0.00 .79 021

m 0. 0.374 .7-M 0.024 15 .

7 0.374 0.295 0.2 .20 2.5w 0.272
8 0.28 0.223 0. 195 -- =29- ,/ 02,

9 .223 .1 0.140 0.0 3.7 .1

11- 0.1F24- 0.0m4 0.07 0.024 14.49 0.277-

Rolling Strain 2.460
max strain rate

Forging (1/sec)

m 3. 12 , 1.0/2

Total Strain 3.532
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TABLE 14. HARDNESS AND TENSILE DATA FOR 6061 AL - 30 MIN IPA AT S00C

SHT TEMP 560CC

TIM• M•AN STU I[V ERRlflORf Y3 UTS %relon WIN~dlus

min RH - "F" (wa) (Wa) (GPa)

24 7J. .5 0.9 13 277 25. 1
56 98.2 1.54 2.53 210 317 23.7 50
137 97.4 0.63 --- 7W- 334 21.3 75

750 96. 0.5 0. 282 350 W89 7
J~g - w-gT -DW - -- l -- 7- -T

-77- --97.7 0- - -0.72

IOO 9UU Z7.6 0.42 0.76s 307 mg 15.0 70

SHT TEMP 63 C

TIM MAN , TO MV ERWOR To UTS %Elong Modulus
min RH - "F" (Mwa) (Wa) (GPa)

0 2F.4 3.3 7z1c 80 2.

-3.7 1--2 -3.2 - .- -3
4 423 1.06 1.9 7 192 3W. 71

W6 . T.1 1.85 122 23T 29.0 77
133 87.2 0.19 0.35 Zvi 28 21.9 61
316U 91U.3- -.6 04 245 30 90 65

177 9.1 0.5 .6 2U2 32 17.0 •o
4217 -9 .43 .7 319 1

--- 77-- - - -1 UUUO 93.B 0.30 0.70 270 317 1.4 7

SHT TEMP 50CC

FIML PAEAN 5TO DeV *FROR Y- UT3 %hEIong Modulus
mrin RH - "F" (Wva) (We) (GPa)

0 193 24 .7 50 16 3.5 5

24 17.7 2.64 4.3 51 16 31.5 x___
5 2.4 2.0 3.67 56 167 31.3 ox

133 56.3 0.60 1.10 106 202 26.0 83
31 -5. 13 2.43 1U3 W4 20. ~77
750 613 13 24 221 269 19. 76
177r W. 0.7 1.4 226 271 165 7
427 82.9 0.2 0.7 223 250 18.6 73

-4 --7 -- 2- -0.1UO 11.11 1.30 2.JU _Zza 2770 15.6 - -76 -

SHT TEMP 480 C

TIME MEAN STDO OV WRROR YS UTU 7Inlong Modulus
mrin RH - "F" (Wa) (Wa) (GPa)
0 M5.2 2.0 .65 5 15 2.5
10 25.2 63

56 24.2 1.16 2.12 57 161 30.9 71

1 -- --I - -0.54 -0.9 -21- W0
1000 UZ.6 1.01 1 .55 Z1 254 17.5 w

63



TABLE 15. HARDNESS AND TENSILE DATA FOR 6061 AL - 5 MIN IPA AT 5000 C

SHT TEMP H10C

TiRUM wi• etll •I FA• bl:t tKNUl T Ufa "itiong MUOURNS
min RH - ' (MPa) (MPa) (WPa)

U 7.- - .37.- 54 3 1.5 tw
10 W =-. 0.112 1.1 13 41 20.4 --- W

--- 7r.- -0.g• --. 779 -- 227.3 - -- WW- -W.7 -uW- -- UT- -- mu

3T1 W. . 1.61 •8 3 40 7133 Y.3.0 U.120 U.VZ ZZ1 31Y 1v.7 11

31 -977U --. 50- M.• 344 1.34

-- grr --.• .4r- zt.!• -I347- 912•

4217 W. o.3i .7 2 4 1.

-- U-U- .-- - -1

SHT TEMP 530 C

Slfl WAR Tl'5 *FV UF *Ys UT3 %along modulus
min RH-"F" (MPa) (MPa) (GPa)

10 - 3 . 3T.1 ,2. 70 ¶W 32.2

33- -w7rT W r7r -wTF -- 7F --- 75=5U• 73.1 O.U9 17 .Z • •V25

133 90.1 0.47 U.w 2153 w 22.1 63

7T - 9211 -. 11- 1.z -232T / 15. -- U-y

-- 77 - -39 - --- V.9- --- 77 -Tg.3- -- 7r
427 943 U.U 1.4 2752 330 1W5 1

-~7---r--- T4---77- -- TfT --- rI1UUUU I 4.T-- V.40 V. 71 1--77- ,-17 - 1-- .07 70

SHT TEW SooC

T1M IAN 5 1 U UtV TW YFo Ulu 'vblong MOdulus
min RH - "F" (MPO) (MPW) (GPa)

v rr -7.W -- W -U=.=
10 21--.3 .7 - -- 49.T- -- 79r 32.1r 8

24 --3.M -1 . .ZUU 4-8,BF 16 - 2.9

550 ZY.O 2.15 3.Ye X)=X 1/U 29.5 xx

133 .... 81 131 W24 272.4 74
315 1. 0.42 0.78 zw TIFF- xg<

750 1 3.. . .33 - 277 18.Tg U -
177g 8,5. 0.31 0.7 23 27U2 18. 1i

4217 -i.. U.41 -- 7 - x 274 11.1 xxxx
1UUUU 04.3 U.31 U.lWl z/0Z lvZ Ia

SHT TEMP 480 C

TOM WMN TTDUW U e N -O YrS- U7! %a•ong Modulus
min RH - F" (WPa) (MPs) (GPa)

--- V -- 4 7 --- 779- jo
10 9. 4.I2.4 40. 15U 33.2
24 12.4 4.5 1.•J 40 147 32. U-55 Z0.5 1.1- w.17 51 1 U 32.4 57

1 3.4 U.Z5 13 .1. 5

- --r--U----7- -- W--417 4.U 0./a 1.4,3 21 231 1786
1UozUI1.9 U.4v U.04• X10 zoo 10.0 /
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TABLE 16. HARDNESS AND TENSILE DATA FOR 6061 AL - 10 V/o AL20 3 30 MIN IPA AT S00C

SHT TEW 580 C

Yom I•FM An lUY T:WMUW YF• uT "tong IodulUS
mrin RH - -" (MPW) IMPa) (GPa)

lO 73.u 4.2 7.9 ,1 Vsz 1. ~

0¶ -WA I7 7 5 W ~IO4 U. ¶5 41 1 5 51
- ---- 214 -1.

133 93.2 1,1G 2.13 257l 33 13.4 M1

315 V. 1.,0 2.35 zeb Mg- 9. 7

750u 915.1 17' .3 99/ -- 5

421 W•.5 U77 -- r137- 35 75 X)

SHT TEMP 530C

*1 IMAMM 1UUtV tMNUM (Yu Ulu5 l/long UOIUluS
min RH - F" (MPa) (MPa) (GPs)

10 5.4 -. 10 103 721 _1.1 X__

24 7.U .3 W 142 211 72 XXX

133 92.5 2.19 4.01 232 333 11.1 94
313 b5.3 1.15 2.11 937 344 -11 .u 7

1 7. .2 1I5 V14 .
I T/M 97.1 --- 1.4- 334 • U. 7 b
4217 77 1.U7 1. 318 3U 7.5 92

ILUUUU .9..4 V.00• LUZ M3 M T.4 92

SHT TEMP 500 C

*T IAN 5 ILI UUV *tKWUF Ys UluT 9Ilong moaulus
mrin RH- "F" (MPa) (MPa) (GPa)
u 1. . W 7 15 .4 11
10 3.7 1.22 2.- 4 71 -Tg -1.7 _x_

-7 41.6 1W.N - .4W 77 1T91 - T . -xF _

5b W.1 1 .. 850b 11 • 215 17.7 _o _o

l3i 03. .1 178 253 12=.2 xo
318 W2. 0.7 ~U.5R 270 U 1 O B

-- 7T --- 7r- --- 27U- -- MW -- 7T= 84
-- 77 91.-7 -.- = -. 74 2U- 317-r.-

4Z1 f -M.3 U.89 1.5•3 27VJ 3w• 7.7 8

1UUU ttl .U U.t4 1.1 1 Zoo J1V 0.0 of

SHT TEMP 480 C

TInM WMA bIwtfV IROW YS U- 5 9-- long m iodulus
mrin RH -"" (MPa) (MPa) (GPa)

10 251 4.32 7.W W• 1U 04 )o
24 27, 4.W 8.2 W4 11 23.1 ___•

13 59.u 65 -T5.WZ 77 F- 4 21g5 83

31W5. U.5 12.74 1W U 13.4 U!

4217 32.3 U.7 . 214 2837. 81

S W US 7 20t 255 TO
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TABLE 17. HARDNESS AND TENSILE DATA FOR 6061 AL - 10 v/o AL2 03 5 MIN IPA AT 500°C

SHT TElW SeOoC

Tint •MAN * U ue tROM Y5 UTZ "Wong Motdus

min RH - F" (MPa) (MPa) (GPa)

1U 7 . 8 8 294 1.
2T - - 99.0 --. 3 - U.Vr- -- " •1 04 15.

S •.r . .37 73 7 -- T4=. -w-
3.3 U.3b .T3 lb8

316 7.b W U.31 iU. JU

427 -. u.4• a3.8 359 3• 3.2 78------ - -=

SHT TEMP 530 C

lIMML WftA Pa bU toV okv U ftu yu uT %tiong wO~lUlus

min RH - "F" (MPa) (MPa) (GPa)

0 - . 1.bl .7 - 550
2. TU .4 2.37 123 244 I .W

55 8. 1 1.1 .0 12 ~. 17. 79
133 91 .0 U.8U 1.10 248 31 b 7.9 3

-31 S.5 U.44 U.v1 z 344 11.4
- 9.2 u. 79- 1.45W X)00OC(X ~ o xx)O(OOCxx

1778 aWU 0.44 U.81 312 WXXXX

----421 / .7 0.50 = x-- -4 .

SHT TEMP 500C

llM tALW 5 Io 'UEV *TRWUO Yu UT3T Mulong MiONiUS
min RH - F" (MPa) (MPa) (GPa)
U -T 1. 3. U7I= -1. /

-1-4- TO 22.,

56 ,59.7 Mu1 1.3 1u.b z1 b 11.9 /11

133 8.U I= 2.24 772 Z2F 11.1 9 3

-- 77- -97T -rU -M ---- 67-
421.1 =.0 1.18 2. 13 3•31 .4

1 UULA) v 1.4 U. IV 1.za8 Z/U I/1. V

SHTTEMP 480 C

*1lM IMAM 5* UlV RNWUM YF U tb 91tiong MOGWUS

min RH - "F" (MPa) (MPa) (GPa)

10 7= 232 . 4.2 77 172 11. 5

¶4 33.3 .8 3.4 ¶7 ~73 18. 856 J4.7 2.22 4.07 53 173 M M
1 5 W.7 U. 74- 1i

31s1.u 1.37- 2.l 1:3=I1.2 xxx

75U U,•.3 U.= -- 39 2 -3-277 7.7 V1

-7F -BF- -TW--7N-29 --- U--
I u v ao.u V.41 U./a• Z48 ZO / W.U xxx6
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TABLE 18. HARDNESS AND TENSILE DATA FOR 6061 AL - 20 V/) AL20 3 30 MIN IPA AT 500°C

SHTTEMP HO C

Tam• MAN SfIu UtV t NHUtl yu Ulu "%tiong Modulus

min RH -"F (MPa) (MPa) (GPa)

-- T -727' i-.W--"~f-'7 -t

4 51.7 z.i• 4.3 115 •7 5T 9

~TU- -- UT -- T7- -79- -TU -75S• -- 1.= 3.04F --. 51 243 --- 3.6- 103TU

133 9.3 3.03 5.55 2w 3b1 0.27 v I

7/*O v.3 1.-17.77- -- 399 1--.Y 93

177U 10U1.2 1.4 :7.73 • 0 ,
--1 / 1.49 -.•r• - --1.-

1AJUU 1UU./ U.•Iu 1.01 Job,• Jul U.v )00=

SHT TEMP 53 C

TIMEA M•Al SIr UtV ILHNUM TS Ulu' '%bllong moduluUs

mrin H -F" (MPa) (MPa) (GPa)

T1 .1 1.49 - 7.7T 125 -- 7W - 13.3
-- 7Fi- 2USU -7r -- TT

W7 U.7J 1.7 1

567 W2. 0.17 1 .• 24 1 W
133 97.0 0.35 0.ft j1U 351 4.0 31

31 -- w9. 1 .WU 1.83 --- 7-1 72.4
7S - - -.3 - -- M 0.59u~7 - 344 - -- J9- -T -.9 --

-- 177- - -. -- 7- --.4 4B.

1UU 0'. U.5 r,•s 1 Ulb"z 3al1 Z.4 g73

SHTTEMP 500C

INI• M•t PAiLA 51U UDV t"HFUM Y•5 UtI %itlong MOaUlUis

min RH - F (MPa) (MPa) (,Pa)
0 50.9- 1.,T3 - --. W-- - 97-- 9 14.b 9

74 - 45.5F --. 79- --. 1= --- M 1- g -- r7.3

bb b 5.2 1.2/ 2.33 1ot 210 2142 55
133 7/.7 -- TV 2-71 195 '19 U.9 W7
1 sib .77 1.18 7.1 277 3!32. .U 02

- -T. - --- 79 32- ---- af

177W8 - 97=. 1 -.-- 2.79- -- 7F --- 7 --- 7- -- 97

4z17 W4.4 O :g7 179 290 319 4.2 92

1UUU W.t U.ZU U.Jo ZOO .3z1 4.0 9

SHT TENP 480C

fi*t MN STIU UItV KNWUF Ys U15 I cltong mUUdls
min RH -" (MPa) (MPa) (GPa)

133

Jib

-------
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TABLE 19. HARDNESS AND TENSILE DATA FOR 6061 AL - 20 v/o A L20 5 MIN IPA AT 5000C

SHT TE MP sIC

111M MAN• 5TO Dv ,-H~UM To UTN '%tiong PoA"ums

min RH - "F" (MPa) (MPa) (GPa)

0 -7rr -

133 .3 0.41 U.57U j8 353 2.6 Be
315 v .s 1.09 - . 3 11 2 .4 97
750 102.0 U.42 0.77 324-3 2.7 101
1/t7 101 .- 2F- -- Jg -. 714-

42• 113 0.3 0.• 3P4 3 '
----- e---9-- -T.- -3

SHT TEMP 530 C

u WAN W To UtV WEK "u UY5 -rilong modulus
min RH - "F (MPa) (MPa) (GPa)

U U•. 1.2 W.Z 1 241 1139

1 1,. 1.4 13B 22 1.

133 . U.40 0.a 9 321 1.9 95
316 B7 1.11.4 3..3 357 2.4
7S. .2 . 132 323 37 3. -93-

T77U- W W TW
-1--- 99.2 -777- -143.

SHTTEWP 500C

TL P TAN TUV blWOF" t K Y * UT5 WIong Modulus
min RH - "F" (MPa) (MPa) (GPa)
U-- -- w =. 5" -- ~l -- v =. -19 O
10 -7w -.-i.T - -- 11--
24 55u 1 ( 1.51 -w 223 13. _7

568 bu.1 f .99J 1.U1 I/1 Zzi 8.7 V)ON

13 U, =.93 1.71 -4 2•4 3.5 X-O-1

4217 . 04 .0.0 1 1811S77g .1 O~3 1 U .1 33 27 8

E1 93.0 F 2.U 2. 340 1C.0 1U

SHT TEMP 480 C

lWint MEAN 5100t EM IMIU M Y5• Ulta %Jbtlong Modlulus

min RH - F" (MPa) (MPa) (GPa)

---- TTr- ~ --r= ev T89 -- T.1 -M

1U 48.3 1.7 1. 413 1 2,4 88

1.3 b.1 0.5V 1.Ut 143 23 7.9 --
316 -W.3 1 -Z -- 77 215 '27 - - .7 - 7

-778-- -- V.7- 1- - --- g19 .

4217 H7.4 Ul 1 .05 -(30U 45Z..U v6

1• 8J.9 1.84 3.U •'b •'•) 4Z68



APPENDIX C

GRAPHICAL PRESENTATION

OF HARDNESS AND TENSILE

TEST DATA

FOR 5 MIN IPA AT 5000C
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6061 Aluminum 5 min IPA at 500C
40

-0- SHT &WOC
0 ..--- -- ........ ... 8 HT S 0C .... .

-0-SBHT 600C2 0 .. .......... .•.. ........ .......... ...........

0 .. ...... . ....... .... ... . ..... . . . . .t . . . .. . ... .

1 10 100 1000 10000 100000
TIME (minutes)

Figure 46. Plot of elongation versus aging time for unreinforced 6061
material processed utilizing a 5 rmin. ]EPA during rolling at 500*C. Data are included
for four different solution heat treatment temperatures.

6061 Aluminum 5 min IPA at 500C

3w0

2 0 0 . ......... ..... ........... ....... --- . ..... ...... 8 H $.... ........ .--------- -

S-0- $HT SOOC

110 10O lOO 10000 10000o

TIME (minutes)

Figure 47. Plot of yield strength versus aging time for unreinforced 6061
material processed utilizing a 5 rain. IPA during rolling sit 500*C. Data are included
for four different solution heat treatment temperatures.
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6061 Al 5 min IPA at 500C

400 -- 1

U

C.

w .-

I- 2
_0

. 100

1 10 w0 =00 I=00 am00

Tim

Figure 48. Plot of ultimate tensile strength versus aging time for
unreinforced 6061 material processed utilizing a 5 min. IPA during rolling at 500°C.
Data are included for four different solution beat treatment temperatures.

6061 Aluminum 5 min IPA at 500C

100

9 0 . ..... ............... ................. . .. . ........ .. .. .............. .. .......... ..... .

i 10 ioI F 11

7 .... ...... .. ... ...... ' " ' . . ... -" .......

Figure 48. P)lot of ultmaerdnilesregt versus aging time for urifre 0!mtra
unenocd66 aeilprocessed utilizing a $5mmn. I]PA during rolling at 50000Dt aeinldeCorfu
Daaaeicue o ordifferent solution heat treatment temperatures.

6061 Alum.num 5 ...... .A a. 5

.0

1 10 1 to 100 00 we000
TIME (mm)

Figure 49. Plot of hardness versus aging time for unreinforced 6061 material
processed utilizing a 5 min. ]EPA during rolling at 500*C. Data are included for four
different solution heat treatment temperatures.
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6061 Al 10 v/o AI203 5 min IPA at 500C
3 20

-0- 8HT 50

S•~--0- Silt 600C

2 0 .......... ...... .. ... ... .

2
2

2 j ... . . ...... •.. ...... - -- -----... . ..... t . . . .....

1 10 W00 M00 VI00
TIME (minutes)

Figure 50. Plot of elongation versus aging time for 6061 Al - 10 vol. pct.
A120 3 material processed utilizing a 5 min. IPA during rolling at 0°C. Data are
included for four different solution heat treatment temperatures.

6061 Al - 10 vlo A1203 5 min IPA at 500C
400-

Sr•._• :-0- SHT 6OWC
-- SHT 480C

20

p272

1 10 100 1000 1O00O 100000
TIME (minutes)

Figure 51. Plot of yield strength versus aging time for 6061 Al - 10 voL. pct.
A120 3 material processe utilizing a S main IPA during roling at SO0°C. Data are
included for tour different solution heat treatment temperatures.

72



II6061 At i10 pro AI203 5 min IPA at 500C
410

..0. ....... . ....... . .............. ....... S if 3 . ......

1 10 10 1000 10000 10000

TIME (minwes)

Figure 52. Plot of ultimate tensile strength versus aging time for 6061 Al - 10
vol. pct. A1203 material processed utilizing a 5 min. IPA during rolling at 5r000C.
Data are included for four different solution heat treatment temperatures.

6061 AlI- 10 v/o A1203 5 min IPA at 500C

U.

: 70
70

a 6 ..... .. . ............. .... ......... .. .. .. .. . ...... .3 ......... ....... ..SH 600

5 0 - ... ....... ]. ....... .. . . . ...... • ....... .... .... T 6 3 C ...
-.- SNT 600C

1 10 100 1000 10000 100000

TIME (min)

Figure 53. Plot of hardness versus aging time for 6061 Al - 10 vol. pct. A120 3

material processed utilizing a 5 min. IPA during rolling at 5000 C. Data are included
for four different solution heat treatment temperatures.
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6061 A - 20 v/o AI203 5 min IPA at 500C
20-

-'-SN1T HOC

16 ........ .-- S T 530C
-0-SOT 500C

x -W- SHT 4SOC

. . .0 ........... .. ... . ..... ... .

7 .... .. . . . . . . . . . . . .I . . . . . . . . ._g5

1 10 100 1000 10000 100000
TIME (minutes)

Figure 54. Plot of elongation versus aging time for 6061 Al - 20 voL pct.
A120 3 material processed utilizing a 5 min. IPA during rolling at 500*C. Data are
included for four different solution heat treatment temperatures.

6061 Al - 20 v/o A1203 5 min IPA at 500C

400

S200

>" 10 -o- HT 5000

SSHT4i0I0

1 10 100 1000 10000 100000
TIME (minutes)

Figure 55. Plot of yield strength versus aging time for 6061 Al - 20 vol. pct.
A120 3 material processed utilizing a 5 min. IPA during rolling at 500*C. Data are
included for four different solution heat treatment temperatures.
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6061 Al- 20 vlo A1203 5 min IPA at 500C
400

.. . . 1...... .0 . ... .... 1 0 . ....

TIME (minutes)

Figure 56. Plot of ultimate tensile strength versus aging time for 6061 Al - 20
vol. pet. A120 3 material processed utilizing a 5 min. IPA during rolling at 5000C.
Data are included for four different solution heat treatment temperatures.

6061 Al- 20 v/o A1203 5 min IPA at 500C

110

100

70

-r 1 0 10 -1-00i 1000 1000

S4 0 ..... ..... ....... ...... . -o -B H T S O O C I .. . . . . ..
"• ! i I-•-HT 480c

3 0 . ..................... ... ...... ............... .......... ....... ..................

2 0 ..... ....... .. ........... .......... .....-. .. ........ ...... - ...

1 10 100 1000 10000 '10000

TIME (min)

Figure 57. Plot of hardness versus aging time for 6061 Al - 20 vol. pet. A120 3
material processed utilizing a 5 min. IPA during rolling at 500°C. Data are included
for four different solution heat treatment temperatures.

75



REFERENCES

i. Cooperative Research and Development Agreement -- Naval Postgraduate School/DURALCAN-
USA Cooperative Research in Thermomechanical Processing and Ductility Enhancement of
DURALCAN Composite Materials, April 1993.

2. McNelley, T. R., Crooks, R., Kalu, P. N., and Rogers, S. A., "Precipitation and Recystallization
During Processing of a Superplastic Al-I0Mg-0. I Zr alloy", Materials Science and Engineering,
A166 pp. 135-143 (1993).

3. Hales S. J., McNelley, T. R., and McQueen, H. J., Metallurgical. Transactions. A, Vol. 22,
p. 1037 (1991).

4. Hales S. J. and McNelley, T. R., in H. C. Heikkenen and T.R. McNelley (eds.). Proc Symp. on
Superplasticity in Aerospace, TMS, Warrendale PA p. 61, (1988).

5. Crooks, R., Hales, S. J., and McNelley, T. R. in C. H. Hamilton and N. E. Paton (eds.),
Superplasticity and Superplastic Forming, TMS, Warrendale PA p. 389, (1988).

6. McNelley, T. R., and Kalu, P. N. in S. Hori, M. Tokizane and N. Furushiro (eds.) Proc. of
Superplavticity in Advanced Materials, JSRS, Osaka University, Osaka, Japan, p. 413 (1991).

7. Hales, S. J., McNelley, T. R., and Crooks, R., in T. Chandra (ed.), Recrystallization '90, Proc.
Int. Conf., TMS, Warendal PA p. 231 (1990).

8. Gorsuch, T.E., The Roles of Strain and Reheating Interval in the Continuous Recrystallization
During Thermomechanical Processing by Warm Rolling of an AI-Mg Alloy, Master's Thesis,
Naval Postgraduate School, December 1989.

9. Rogers, S.A.., The Roles of Particles in Recrystallization of a Thermomechanically Processed

AI-Mg Alloy, Master's Thesis, Naval Postgraduate School, September 1992.

10. Kalu and T. R. McNelley, "Microstructural Refinement by Thermomechanical Treatment of a
Cast and Extruded AI-A120 3 Composite", Scripta Metallurgica et Materialia, Pergamon Press,
Vol. 25, pp. 853-858, (1991).

IH. McNelley, T. R., and Kalu, P.N., "The Effects of Thermomechanical Processing on the Ambient
Temperature Properties and Aging Response of a 6061 A|-A120 3 Composite", Scripta
Metallurgica et Materialia Pergamon Press,Vol. 25, pp. 1041-1046, (1991).

12. McNelley, T.R. and Kalu, P.N., "Thermomechanical Processing and Ductility Enhancement of a
6061 Al - A120 3 Metal Matrix Composite", Advanced Synthesis of Engineered Structural
Materials, Proceeding of the International Conference, San Francisco, CA, USA 30 August-
2 September 1992, ASM International , Materials Park, OH.

13. Schaefer, T. A., Thermomechanical Processing and Ambient Temperature Properties of a 6061
Aluminum 10 Volume Percent Alumina Metal Matrix Composite, Master's Thesis, Naval
Postgraduate School, p. 13, March 1990.

76



14. Macri, P.D., Processing Microstructure and Elevated Temperature Mechanical Properties of a
6061 Aluminum-Alumina Metal Matrix Composite, Master's Thesis, Naval Postgraduate School,
December 1990.

15. Magill, M. D., The Influence of Thermomechanical Processing Parameters on the Elevated
Temperature Mechanical Behavior of a 6061 Aluminum-Alumina Metal Matrix Composite
Materials, Master's Thesis, Naval Postgraduate School, December 1990.

16. Schauder, T. J., The Elevated Temperature Behavior of a 10% Volume Al-AI203 Metal-Matrix
Composite, Master's Thesis, Naval Postgraduate School, March 1992.

17. Eastwood, D.F., The Effect of Thermomechanical Processing Parameters on the Ambient
Behavior of 10% Volume Al-Alumina, Master's Thesis, Naval Postgraduate School, March 1992.

18. Osman, T. M., Lewandowski, J. J. and Hunt Jr., W. H., "Different Deformation Histories",
Fabrication of Particulates Reinforced Composites, pp. 209-116, ASM International
Conference Proceedings, 1990

19. Lewandowski, J. J. et al., "Effects of Casting Conditions and Deformation Processing on A356
Aluminum and A356-20 Vol. % SiC Composites", Journal of Composite Materials Vol. 26,
No. 14, pp. 2076-2106, (1992).

20. Llorca, J., Needleman, A., et al., "An Analysis of the Effects of Matrix Void Growth on
Deformation and Ductility in Metal-Ceramic Composites", Acta metall. mater.. Pergamon Press,
Vol. 39 No. 10, pp. 2317-2335, (1991).

21. Longenecker, F. W, "An Analysis of the Microstructure and Reinforcement Distribution of an
Extruded Particle- Reinforced Al 6061 10 v/o Percent A1203 Metal Matrix Composite ', Master's
Thesis, Naval Postgraduate School, September 1993.

22. Humphreys, F. J., "The Nucleation of Recrystallization at Second Phase Particles in Deformed
Aluminum", ACTA METALLURGICA.,, Pergamon Press, Vol. 25, pp. 1323 (1977)

23. Humphreys, F. J. and Kalu, P. N., "Dislocation-Particle interactions During High Temperature
Deformation of Two-Phase Aluminium Alloys", ACTA METALLURGICA,. Pergamon Press,
Vol. 35, pp. 2815 (1987)

24. Humphreys, F. J. and Kalu, P. N., in Aluminum Technology '86, Institute of Metals, London,
1986, p.34 7 .

25. Humphreys, F. J. and Miller, W. S. et al., "Microstructural Developement During
Thermomechanical Processing of Particulate Metal Matrix Composites", Materials Science and
Technology, Vol. 6, pp. 1157-1166, November 1990.

26. Dixon, W., DURACAN-USA, San Diego, CA Private Communication.

27 Dixon, W., DURACAN-USA, San Diego, CA Private Communication.

28. Dieter, George, Mechanical Metallurgy, 2nd Edition, (International Student Edition),
McGraw Hill, p 633, (1976).

77



29. Metals Handbook, Tenth Edition, Volume 2, edited by Davis, Joseph R., et al.., pp. 103-104,
ASM International (1990).

30. Ingalls, A.G, Amateur Telescope Making, Scientific American, Inc. NY 1970.

31. Gysler, A. et al., "A Comparison of Microstructure and Tensile Properties of P/M and I/M Al-

Li-X Alloys", Aluminum-Lithium Alloys AIME Conference Proceedings Sanders, T. H. and
Starke, E. A. Jr. (eds.) pp. 265, (1980)

78



INITIAL DISTRIBUTION LIST

No Copies

Library, Code 52 2
411 Dyer Rd. Rm 104
Naval Postgraduate School
Monterey, CA 93943-5 101

2. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

3. Mr. William Dixon 2
Director, Extrusion Development
DURALCAN-USA
10505 Roselle Street
San Diego, CA 92121

3. Chairman, Code ME/Kk
Mechanical Engineering Department
Naval Postgraduate School
Monterey, CA 93943-5108

4. Professor T. McNelley, Code ME/Mc 5
Mechanical Engineering Department
Naval Postgraduate School
Monterey, CA 93943-5108

5. Naval Engineering Curicular Officer, Code 34
Mechanical Engineering Department
Naval Postgraduate School
Monterey, CA 93943-5109

6. LCDR Werner Hoyt, USN 2
Executive Officer
SUPSHIP Long Beach
Long Beach, CA 90822

79


